Suppressing the photobleaching and photoluminescence intermittency of single near-infrared CdSeTe/ZnS quantum dots with p-phenylenediamine

Opt Express. 2018 Apr 30;26(9):11889-11902. doi: 10.1364/OE.26.011889.

Abstract

Intrinsic photobleaching and photoluminescence (PL) intermittency of single quantum dots (QDs), originating from photo-oxidation and photo-ionization respectively, are roadblocks for most single-dot applications. Here, we effectively suppress the photobleaching and the PL intermittency of single near-infrared emitting QDs with p-phenylenediamine (PPD). The PPD cannot only be used as a high-efficient reducing agent to remove reactive oxygen species around QDs to suppress the photo-oxidation, but can also bond with the surface defect sites of single QDs to reduce electron trap states to suppress the photo-ionization. It is shown that the survival time of single QDs, the on-state probability of PL intensity traces, and the total number of emitted photons are significantly increased for single QDs in PPD compared with that on glass coverslip.