Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing

Opt Express. 2018 Apr 16;26(8):10573-10588. doi: 10.1364/OE.26.010573.

Abstract

Distributed vibration sensing in optical fibers opened entirely new opportunities and penetrated various sectors from security to seismic monitoring. Here, we demonstrate a most simple and robust approach for dynamic strain measurement using wavelength-scanning coherent optical time domain reflectometry (C-OTDR). Our method is based on laser current modulation and Rayleigh backscatter shift correlation. As opposed to common single-wavelength phase demodulation techniques, also the algebraic sign of the strain change is retrieved. This is crucial for the intended applications in structural health monitoring and modal analysis. A linear strain response down to 47.5 pε and strain noise of 100 pε/√Hz is demonstrated for repetition rates in the kHz range. A field application of a vibrating bridge is presented. Our approach provides a cost-effective high-resolution method for structural vibration analysis and geophysical applications.