Collisional dynamics in laser-induced plasmas: evidence for electron-impact excitation

Opt Express. 2018 Apr 16;26(8):10392-10399. doi: 10.1364/OE.26.010392.

Abstract

We have experimentally investigated the collisional dynamics in femtosecond-laser-induced plasmas and presented the evidence for electron-impact excitation through enhanced high-order harmonic (HH) generation. The measurements were carried out by using an elliptically polarized pump pulse to induce the underdense plasmas and by using a time-delayed linearly polarized probe pulse to drive the HH generation from the plasmas. We found that the rise time of this enhanced HH generation was insensitive to the ellipticity degree (ED) of pump pulse but sensitive to its laser intensity (LI). With further comparison between physical scenarios and qualitative analysis, we demonstrated that the atomic excitation causing the HH enhancement should be attributed to the electron-impact excitation, i.e., the excitation from the collision between neutral atoms and electrons during the lifetime of the underdense plasma.