Evaluation of the current contamination status of PFASs and OPFRs in South Korean tap water associated with its origin

Sci Total Environ. 2018 Sep 1:634:1505-1512. doi: 10.1016/j.scitotenv.2018.04.068. Epub 2018 Apr 18.

Abstract

We investigated the concentrations of perfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs) in 44 tap water samples, collected from eight major cities in South Korea served by four representative watersheds, to evaluate the water contamination status. The total concentrations of PFASs and OPFRs ranged from 1.44 to 224ng/L (median=11.9ng/L), and 74.0 to 342ng/L (median=151ng/L), respectively. The predominant compounds in tap water were perfluorohexane sulfonate (PFHxS), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), tris(2-chloroethyl) phosphate (TCEP), tris(chloroisopropyl) phosphate (TCIPP), and tris(2-butoxyethyl) phosphate (TBOEP). Tap water originating from the Nakdong River within an industrial complex showed a notably higher PFHxS proportion to total PFASs. In addition, significantly higher PFAS levels were found in river-originating tap water than in lake/reservoir-originating tap water (Mann-Whitney U test, p<0.05). Meanwhile, major OPFRs showed no clear difference in distribution by region, and no significant difference in major OPFR levels was observed according to tap water origin. Finally, the average human exposure via tap water consumption was estimated for PFASs (46.8ng/person/day) and OPFRs (254ng/person/day).

Keywords: Human exposure; OPFRs; PFASs; South Korea; Tap water.