Identification, contribution, and estrogenic activity of potential EDCs in a river receiving concentrated livestock effluent in Southern Taiwan

Sci Total Environ. 2018 Sep 15:636:464-476. doi: 10.1016/j.scitotenv.2018.04.031. Epub 2018 Apr 27.

Abstract

We assessed 22 selected endocrine-disrupting compounds (EDCs) and other emerging, potentially endocrine-active compounds with estrogenic activity from the waters of the Wuluo River, southern Taiwan. This watershed receives high amounts of livestock and untreated household wastewaters. The river is surrounded by concentrated animal feedlot operations (CAFOs). River water samples were analyzed for selected compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS), T47D-KBluc reporter gene assay, and E-screen cell proliferation in vitro bioassay. Total concentrations of ∑alkylphenolic compounds (bisphenol A, 4-nonylphenol, t-nonylphenol, octylphenol, nonylphenol mono-ethoxylate, nonylphenol di-ethoxylate) were much higher than ∑estrogens (estrone, 17 β-estradiol, estriol, 17ß-ethynylestradiol, diethylstilbestrol), ∑preservatives (methyl paraben, ethyl paraben, propyl paraben, butyl paraben), ∑UV-filters (benzophenone, methyl benzylidene camphor, benzophenone-3), ∑antimicrobials (triclocarben, triclosan, chloroxylenol), and an insect repellent (diethyltoluamide) over four seasonal sampling periods. The highest concentration was found for bisphenol A with a mean of 302 ng/L. However, its contribution to estrogenic activity was not significant due to its relatively low estrogenic potency. Lower detection rates were found for BP, EE2, TCS, and PCMX, while DES and EP were not detected. E1 and E2 levels in raw water samples were 50% higher than the predicted no-effect concentrations (PNEC) for aquatic organisms of 6 and 2 ng/L, respectively. The potency of estrogenic activity ranged from 11.7 to 190.1 ng/L E2T47D-Kbluc and 6.63 to 84.5 ng/L E2E-Screen for extracted samples. Importantly, estrone contributed 50% of the overall activity in 60% and 44% of the samples based on T47D-KBluc and MCF-7 bioassays, followed by 17 ß-estradiol, highlighting the importance of total steroid estrogen loading. This study demonstrates that the estrogenic activity of target chemicals was comparable to levels found in different countries worldwide. More intense wastewater treatment is required in areas of intensive agriculture in order to prevent adverse impacts on the ambient environment and aquatic ecosystems.

Keywords: Alkylphenolic compounds; E1 and E2 levels; EDCs; LC-MS/MS; Livestock discharge; MCF-7 bioassays; T47D-KBluc.

MeSH terms

  • Animal Husbandry*
  • Animals
  • Endocrine Disruptors / analysis*
  • Environmental Monitoring*
  • Estrogens
  • Livestock
  • Rivers
  • Taiwan
  • Wastewater / analysis*
  • Wastewater / statistics & numerical data
  • Water Pollutants, Chemical / analysis*

Substances

  • Endocrine Disruptors
  • Estrogens
  • Waste Water
  • Water Pollutants, Chemical