Quantitative Attachment of Bimetal Combinations of Transition-Metal Ions to the Surface of TiO2 Nanorods

Langmuir. 2018 May 15;34(19):5422-5434. doi: 10.1021/acs.langmuir.8b00337. Epub 2018 Apr 30.

Abstract

We report the sequential, quantitative loading of transition-metal ions (Cr3+, Mn2+, Fe2+, Co2+, Ni2+, and Cu2+) onto the surface of rod-shaped anatase TiO2 nanocrystals in bimetallic combinations (6 C2 = 15) to form M,M'-TiO2 nanocrystals. The materials were characterized with transmission electron microscopy (TEM), powder X-ray diffraction (XRD), elemental analysis, X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. TEM and XRD data indicate that the sequential adsorption of metal ions occurs with the retention of the phase and morphology of the nanocrystal. Atomistic models of the M,M'-TiO2 nanocrystals were optimized with density functional theory calculations. Calculated UV-visible absorption spectra and partial charge density maps of the donor and acceptor states for the electronic transitions indicate the importance of metal-to-metal charge transfer (MMCT) processes.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.