An Alternative Approach to Study Primary Events in Neurodegeneration Using Ex Vivo Rat Brain Slices

J Vis Exp. 2018 Apr 11:(134):57507. doi: 10.3791/57507.

Abstract

Despite numerous studies that attempt to develop reliable animal models which reflecting the primary processes underlying neurodegeneration, very few have been widely accepted. Here, we propose a new procedure adapted from the well-known ex vivo brain slice technique, which offers a closer in vivo-like scenario than in vitro preparations, for investigating the early events triggering cell degeneration, as observed in Alzheimer's disease (AD). This variation consists of simple and easily reproducible steps, which enable preservation of the anatomical cytoarchitecture of the selected brain region and its local functionality in a physiological milieu. Different anatomical areas can be obtained from the same brain, providing the opportunity to perform multiple experiments with the treatments in question in a site-, dose-, and time-dependent manner. Potential limitations which could affect the outcomes related to this methodology are related to the conservation of the tissue, i.e., the maintenance of its anatomical integrity during the slicing and incubation steps and the section thickness, which can influence the biochemical and immunohistochemical analysis. This approach can be employed for different purposes, such as exploring molecular mechanisms involved in physiological or pathological conditions, drug screening, or dose-response assays. Finally, this protocol could also reduce the number of animals employed in behavioral studies. The application reported here has been recently described and tested for the first time on ex vivo rat brain slices containing the basal forebrain (BF), which is one of the cerebral regions primarily affected in AD. Specifically, it has been demonstrated that the administration of a toxic peptide derived from the C-terminus of acetylcholinesterase (AChE) could prompt an AD-like profile, triggering, along the antero-posterior axis of the BF, a differential expression of proteins altered in AD, such as the alpha7 nicotinic receptor (α7-nAChR), phosphorylated Tau (p-Tau), and amyloid beta (Aβ).

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Alzheimer Disease / metabolism
  • Alzheimer Disease / pathology
  • Alzheimer Disease / physiopathology
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Brain / metabolism
  • Brain / pathology
  • Brain / physiopathology*
  • Brain / surgery
  • Male
  • Neurodegenerative Diseases / metabolism
  • Neurodegenerative Diseases / pathology
  • Neurodegenerative Diseases / physiopathology*
  • Rats
  • Tissue Culture Techniques / methods*

Substances

  • Amyloid beta-Peptides