Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life

Curr Biol. 2018 May 7;28(9):1489-1497.e5. doi: 10.1016/j.cub.2018.03.064. Epub 2018 Apr 26.

Abstract

Dating back to almost 400 mya, spiders are among the most diverse terrestrial predators [1]. However, despite considerable effort [1-9], their phylogenetic relationships and diversification dynamics remain poorly understood. Here, we use a synergistic approach to study spider evolution through phylogenomics, comparative transcriptomics, and lineage diversification analyses. Our analyses, based on ca. 2,500 genes from 159 spider species, reject a single origin of the orb web (the "ancient orb-web hypothesis") and suggest that orb webs evolved multiple times since the late Triassic-Jurassic. We find no significant association between the loss of foraging webs and increases in diversification rates, suggesting that other factors (e.g., habitat heterogeneity or biotic interactions) potentially played a key role in spider diversification. Finally, we report notable genomic differences in the main spider lineages: while araneoids (ecribellate orb-weavers and their allies) reveal an enrichment in genes related to behavior and sensory reception, the retrolateral tibial apophysis (RTA) clade-the most diverse araneomorph spider lineage-shows enrichment in genes related to immune responses and polyphenic determination. This study, one of the largest invertebrate phylogenomic analyses to date, highlights the usefulness of transcriptomic data not only to build a robust backbone for the Spider Tree of Life, but also to address the genetic basis of diversification in the spider evolutionary chronicle.

Keywords: Araneae; Arthropoda; Chelicerata; lineage diversification; orb web; transcriptomics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Arachnida / genetics
  • Biological Evolution
  • Genetic Variation / genetics
  • Genomics / methods*
  • Phylogeny
  • Predatory Behavior
  • Spiders / genetics*
  • Spiders / physiology*
  • Transcriptome / genetics