Effects of nitrogen combined with zinc application on glutamate, glutamine, aspartate and asparagine accumulation in two winter wheat cultivars

Plant Physiol Biochem. 2018 Jun:127:485-495. doi: 10.1016/j.plaphy.2018.04.022. Epub 2018 Apr 22.

Abstract

Zinc (Zn) deficiency remarkably depresses the protein concentration in the grain of winter wheat. Cultivar 'Pingan 8' showed lower Zn concentrations in the grain than did cultivar 'Yangao 006' after nitrogen (N) combined with Zn application. However, little is known about how amino acids are influenced by Zn combined with N application or about the differences in amino acid accumulation between the two winter wheat cultivars. A pot experiment was conducted to characterize amino acid accumulation in the low Zn-accumulating cultivar 'Pingan 8' and the high Zn-accumulating cultivar 'Yangao 006' at various growth stages (seedling, jointing, grain filling and maturity) as influenced by N and Zn supply. The N (N0.2) combined with Zn (Zn10) application significantly increased grain yields and the concentrations of N, Zn and crude protein in the grain of both wheat cultivars. N combined with Zn application significantly increased the concentrations of glutamate (Glu) and asparagine (Asn) but decreased the concentrations of glutamine (Gln) and aspartate (Asp) in cultivar 'Yangao 006'; the N combined with Zn application decreased the concentrations of Glu and Gln but increased the concentrations of Asp and Asn in cultivar 'Pingan 8' at the jointing, grain filling and mature stages. Correlation analysis results showed that there were significant relationships between grain yields, spike number, grain number and Zn, N, crude protein, Glu, Gln, Asp and Asn concentrations in the shoots and grain of winter wheat at different growth stages. These results demonstrate that N combined with Zn application enhanced protein synthesis by altering amino acid accumulation in both winter wheat cultivars. Cultivar 'Pingan 8' had lower Gln, Asp and Asn concentrations and higher Glu concentrations than did cultivar 'Yangao 006' after the N0.05 treatment but had higher Glu, Gln, Asp, and Asn concentrations and lower Glu concentrations than did cultivar 'Yangao 006' after the N0.2 treatment. These results revealed that the difference in amino acid concentrations between the two cultivars was related to the N application level.

Keywords: Amino acid; Nitrogen metabolism; Protein synthesis; Trace element.

MeSH terms

  • Asparagine / biosynthesis*
  • Aspartic Acid / biosynthesis*
  • Glutamic Acid / biosynthesis*
  • Glutamine / biosynthesis*
  • Nitrogen / pharmacology*
  • Triticum / metabolism*
  • Zinc / pharmacology*

Substances

  • Glutamine
  • Aspartic Acid
  • Glutamic Acid
  • Asparagine
  • Zinc
  • Nitrogen