Radical Carbofluorination of Unactivated Alkenes with Fluoride Ions

J Am Chem Soc. 2018 May 16;140(19):6169-6175. doi: 10.1021/jacs.8b03077. Epub 2018 May 7.

Abstract

The copper-assisted radical carbofluorination of unactivated alkenes with fluoride ions is described. With [Cu(L3)F2]H2O (L3 = 4,4'-di(methoxycarbonyl)-2,2'-bipyridine) as the fluorine source and [Ag(DMPhen)(MeCN)]BF4 (DMPhen = 2,9-dimethyl-1,10-phenanthroline) as the chloride scavenger, the reaction of unactivated alkenes with CCl4 in acetonitrile provided the corresponding carbofluorination products in satisfactory yields. The protocol exhibited a wide functional group compatibility and broad substrate scope and could be extended to the use of a variety of activated alkyl chlorides other than CCl4. A copper-catalyzed fluorotrifluoromethylation of unactivated alkenes was then successfully developed with CsF as the fluorine source and Umemoto's reagent as the trifluoromethylating agent. A mechanism involving the fluorine atom transfer from Cu(II)-F complexes to alkyl radicals is proposed.

Publication types

  • Research Support, Non-U.S. Gov't