Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning

ACS Appl Mater Interfaces. 2018 May 16;10(19):16867-16873. doi: 10.1021/acsami.8b02812. Epub 2018 May 2.

Abstract

We present here a kind of novel multiscale TiO2 square micropillar arrays on titanium sheets through vertically crossed scanning of femtosecond laser. This multiscale micro-/nanostructure is ascribed to the combination of laser ablation/shock compression/debris self-deposition, which shows superaerophobicity in water with a very small sliding angle. The laser-induced sample displays switchable bubble wettability in water via heating in a dark environment and ultraviolet (UV) irradiation in alcohol. After heating in a dark environment (0.5 h), the ablated titanium surface shows superaerophilicity in water with a bubble contact angle (BCA) of ∼4°, which has a great ability of capturing bubbles in water. After UV irradiation in alcohol (1 h), the sample recovered its superaerophobicity in water and the BCA turns into 156°. The mechanism of reversible switching is believed as the chemical conversion between Ti-OH and Ti-O. It is worth noting that our proposed switching strategy is time-saving and the switch wetting cycle costs only 1.5 h. Then we repeat five switching cycles on the reversibility and the method shows excellent reproducibility and stability. Moreover, laser-induced samples with different scanning spacing (50-120 μm) are fabricated and all of them show switchable underwater bubble wettability via the above tunable methods. Finally, we fabricate hybrid-patterned microstructures to show different patterned bubbles in water on the heated samples. We believe the original works will provide some new insights to researchers in bubble manipulation and gas collection fields.

Keywords: bubble manipulation; femtosecond laser; multiscale micropillar arrays; switchable superaerophobicity−superaerophilicity; underwater bubble wettability.