Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry

Ultrasound Med Biol. 2018 Jul;44(7):1392-1401. doi: 10.1016/j.ultrasmedbio.2018.02.013. Epub 2018 Apr 17.

Abstract

Vascular endothelial cells lining the arteries are sensitive to wall shear stress (WSS) exerted by flowing blood. An important component of the pathophysiology of vascular diseases, WSS is commonly estimated by centerline ultrasound Doppler velocimetry (UDV). However, the accuracy of this method is uncertain. We have previously validated the use of a novel, ultrasound-based, particle image velocimetry technique (echo PIV) to compute 2-D velocity vector fields, which can easily be converted into WSS data. We compared WSS data derived from UDV and echo PIV in the common carotid artery of 27 healthy participants. Compared with echo PIV, time-averaged WSS was lower using UDV (28 ± 35%). Echo PIV revealed that this was due to considerable spatiotemporal variation in the flow velocity profile, contrary to the assumption that flow is steady and the velocity profile is parabolic throughout the cardiac cycle. The largest WSS underestimation by UDV was found during peak systole (118 ± 16%) and the smallest during mid-diastole (4.3± 46%). The UDV method underestimated WSS for the accelerating and decelerating systolic measurements (68 ± 30% and 24 ± 51%), whereas WSS was overestimated for end-diastolic measurements (-44 ± 55%). Our data indicate that UDV estimates of WSS provided limited and largely inaccurate information about WSS and that the complex spatiotemporal flow patterns do not fit well with traditional assumptions about blood flow in arteries. Echo PIV-derived WSS provides detailed information about this important but poorly understood stimulus that influences vascular endothelial pathophysiology.

Keywords: Blood flow; Echo particle image velocimetry; Hemodynamics; Ultrasound; Ultrasound imaging velocimetry; Vascular.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Flow Velocity
  • Carotid Artery, Common / diagnostic imaging*
  • Carotid Artery, Common / physiology*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Reference Values
  • Reproducibility of Results
  • Rheology / methods*
  • Stress, Mechanical
  • Ultrasonography, Doppler / methods*