Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle

J Hazard Mater. 2018 Jul 5:353:182-189. doi: 10.1016/j.jhazmat.2018.04.018. Epub 2018 Apr 11.

Abstract

The heterogeneous Fenton system has become the hotspot in the decontamination field due to its effective degradation performance with a wide pH range. Based on the unstable chemical properties of pyrite, in this article, Fe2GeS4 nanoparticles with better thermodynamic stability were prepared by vacuum sintering and high energy ball milling and its potential as Fenton reagent was investigated for the first time. Three determinants of the heterogeneous Fenton system including the iron source, hydrogen peroxide, pH and the degradation mechanism were investigated. The catalyst dosage of 0.3 g/L, initial H2O2 concentration in the Fenton system of 50 m mol/L and pH of 7 were chosen as the best operational conditions. An almost complete degradation was achieved within 5 min for methylene blue and rhodamine b while 10 min for methyl orange. The total organic carbon removal efficiencies of Fe2GeS4 heterogeneous Fenton system for methylene blue, methyl orange and rhodamine b in 10 min were 56.3%, 66.2% and 74.2%, respectively. It's found that the degradation ability could be attributed to a heterogeneous catalysis occurring at the Fe2GeS4 surface together with a homogeneous catalysis in the aqueous phase by the dissolved iron ions.

Keywords: Fe(2)GeS(4); Heterogeneous Fenton; Organic dyes.

Publication types

  • Research Support, Non-U.S. Gov't