The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte

ChemSusChem. 2018 Jun 11;11(11):1787-1796. doi: 10.1002/cssc.201800480. Epub 2018 May 15.

Abstract

Silicon is a promising material for anodes in energy-storage devices. However, excessive growth of a solid-electrolyte interphase (SEI) caused by the severe volume change during the (de)lithiation processes leads to dramatic capacity fading. Here, we report a super-concentrated electrolyte composed of lithium bis(fluorosulfonyl)imide (LiFSI) and propylene carbonate (PC) with a molar ratio of 1:2 to improve the cycling performance of silicon nanoparticles (SiNPs). The SiNP electrode shows a remarkably improved cycling performance with an initial delithiation capacity of approximately 3000 mAh g-1 and a capacity of approximately 2000 mAh g-1 after 100 cycles, exhibiting about 6.8 times higher capacity than the cells with dilute electrolyte LiFSI-(PC)8 . Raman spectra reveal that most of the PC solvent and FSI anions are complexed by Li+ to form a specific solution structure like a fluid polymeric network. The reduction of FSI anions starts to play an important role owing to the increased concentration of contact ion pairs (CIPs) or aggregates (AGGs), which contribute to the formation of a more mechanically robust and chemically stable complex SEI layer. The complex SEI layer can effectively suppress the morphology evolution of silicon particles and self-limit the excessive growth, which mitigates the crack propagation of the silicon electrode and the deterioration of the kinetics. This study will provide a new direction for screening cycling-stable electrolytes for silicon-based electrodes.

Keywords: batteries; electrolyte; silicon; solid-electrolyte interphases; solvation.