NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs

Am J Physiol Renal Physiol. 2018 May 1;314(5):F934-F941. doi: 10.1152/ajprenal.00631.2017. Epub 2018 Apr 19.

Abstract

Luminal flow augments Na+ reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na+, playing a key role in its homeostasis. Whether flow elevations enhance Na+-K+-2Cl- cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.

Keywords: NADPH oxidase; kidney; sodium reabsorption; transport.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Kinetics
  • Loop of Henle / enzymology*
  • Male
  • Mechanotransduction, Cellular*
  • NADPH Oxidase 4 / metabolism*
  • Rats, Sprague-Dawley
  • Renal Reabsorption*
  • Sodium Chloride / metabolism*
  • Solute Carrier Family 12, Member 1 / metabolism*
  • Superoxides / metabolism*
  • Up-Regulation

Substances

  • Slc12a1 protein, rat
  • Solute Carrier Family 12, Member 1
  • Superoxides
  • Sodium Chloride
  • NADPH Oxidase 4
  • Nox4 protein, rat