Microcrack healing in non-ferrous metal tubes through eddy current pulse treatment

Sci Rep. 2018 Apr 16;8(1):6016. doi: 10.1038/s41598-018-24354-7.

Abstract

This study proposed a novel method to heal microcrack within Mg alloy tubes using high density eddy current pulse treatment (ECPT). Through electromagnetic induction inside a copper coil connected with a high density pulse power source supply, the high density (greater than 5 × 109 A/m2) and short duration eddy current was generated in tube specimens of Mg alloy. The results show that the microcracks in tube specimens was healed evidently and the mechanical properties of the tubes subjected to ECPT were improved simultaneously. The crack healing during ECPT was ascribed to not only the thermal stress around the microcrack tips and the softening or melting of metals in the vicinity of microcrack tips, but also the squeezing action acted by the Lorentz force. In the inward-discharging scheme, both the compressive radial stress and tangential stress induced by the Lorentz force contributed to more sufficient crack healing and thus better mechanical properties of tube specimens after the ECPT experiment, compared to the outward-discharging scheme. The ECPT can heal microcracks automatically without directly contacting tubular specimens and is not limited by the length of tubular workpieces, exhibiting great potential for crack healing in non-ferrous alloy tubes.