Retail stability of three beef muscles from grass-, legume-, and feedlot-finished cattle

J Anim Sci. 2018 Jun 4;96(6):2238-2248. doi: 10.1093/jas/sky125.

Abstract

This study aimed to determine the influence of finishing diet on beef appearance and lipid oxidation of three beef muscles. A total of 18 Angus steers were selected from three diet treatments: grass-finished (USUGrass), legume-finished (USUBFT), and grain-finished (USUGrain). After processing, longissimus thoracis (LT), triceps brachii (TB), and gluteus medius (GM) steaks were evaluated over a 7-d display period. A muscle × diet interaction was observed for instrumental lightness (L*) and redness (a*) (P ≤ 0.001). Within each combination, USUGrass was considered darker with lower (P < 0.05) L* compared with USUGrain. For USUBFT, L* was similar to USUGrain for the TB and LT, while the L* of USUBFT and USUGrain GM differed (P < 0.05). In terms of redness, LT a* values were elevated (P < 0.05) in USUGrass compared with USUBFT and USUGrain. For GM steaks, a* of USUBFT and USUGrass were each greater (P < 0.05) than USUGrain. Surface a* of TB steaks were greatest (P < 0.05) for USUGrass followed by USUBFT, and with USUGrain, being lowest (P < 0.05). An overall increase in L* was observed throughout display dependent on diet (P = 0.013). During display, USUGrain steaks had the greatest (P < 0.05) L* followed by USUBFT and USUGrass. Additionally, a day × muscle interaction was observed for a* (P = 0.009). Initially, TB steaks had the greatest (P < 0.05) a* values. However, at day 3, a* values were similar (P > 0.05) among muscles. Visual color scores were in agreement with loss of redness (a*) during display, dependent on diet and muscle type (P < 0.001). Similarly, a day × diet × muscle interaction was observed for visual discoloration (P < 0.001). Day and diet interacted to influence thiobarbituric acid reactive substances (TBARS) (P < 0.001). Initial values did not differ (P > 0.05) between USUGrain and USUBFT; however, USUGrass had lower initial (P < 0.05) TBARS than both USUGrain and USUBFT. At days 3 and 7, TBARS were greatest (P < 0.05) in USUGrain steaks, followed by USUBFT, which was greater (P < 0.05) than USUGrass. A diet × muscle interaction was observed for 10 volatile compounds originating from lipid degradation (P ≤ 0.013). These compounds were less (P < 0.05) abundant in USUGrass compared to TB or GM of USUGrain. This study determined grass-finished beef to have a darker more red color and less lipid oxidation in multiple muscles. Possible mechanisms for this may include an increase in endogenous antioxidants in grass-finished beef.

MeSH terms

  • Animal Feed / analysis*
  • Animals
  • Body Composition
  • Cattle / physiology*
  • Color
  • Diet / veterinary
  • Edible Grain*
  • Fabaceae*
  • Lipid Peroxidation
  • Male
  • Muscle, Skeletal / chemistry
  • Poaceae*
  • Red Meat / analysis
  • Red Meat / standards*
  • Thiobarbituric Acid Reactive Substances / analysis

Substances

  • Thiobarbituric Acid Reactive Substances