Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target

ACS Appl Mater Interfaces. 2018 May 9;10(18):15778-15785. doi: 10.1021/acsami.7b17439. Epub 2018 Apr 24.

Abstract

Piezoresistive properties of hydrogenated diamond-like carbon (DLC) and DLC-based nickel nanocomposite (DLC:Ni) films were studied in the range of low concentration of nickel nanoparticles. The films were deposited by reactive high power pulsed magnetron sputtering (HIPIMS) of Ni target, and some samples were deposited by direct current (dc) reactive magnetron sputtering for comparison purposes. Raman scattering spectroscopy, energy-dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and chemical composition of the films. A four-point bending test was applied to study piezoresistive properties of the films. For some samples containing less than 4 at. % Ni and for the samples containing no Ni (as defined by both EDS and XPS), a giant negative piezoresistive effect was observed. The giant negative piezoresistive effect in DLC films deposited by either reactive HIPIMS or dc magnetron sputtering of Ni target was explained by possible clustering of the sp2-bonded carbon and/or formation of areas with the decreased hydrogen content. It was suggested that the tensile stress-induced rearrangements of these conglomerations have resulted in the increased conductivity paths.

Keywords: EDS; Raman scattering; X-ray photoelectron spectroscopy; diamond-like carbon-containing Ni; giant negative piezoresistive effect; hydrogenated diamond-like carbon.