Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts

J Am Chem Soc. 2018 Jun 6;140(22):6931-6944. doi: 10.1021/jacs.8b02709. Epub 2018 May 25.

Abstract

The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl2(L)(═CHC6H4- o-O iPr); the Grela catalyst nG (a derivative of HII with a nitro group para to O iPr); the Piers catalyst PII, [RuCl2(L)(═CHPCy3)]OTf; the third-generation Grubbs catalyst GIII, RuCl2(L)(py)2(═CHPh); and dianiline catalyst DA, RuCl2(L)( o-dianiline)(═CHPh), in all of which L = H2IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl2(H2IMes)(κ2-C3H6), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl2(H2IMes)(═CH2), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl2(H2IMes)Ln(═CH2) (Ln = py n'; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl2(H2IMes)Ln. A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.

Publication types

  • Research Support, Non-U.S. Gov't