Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System

ACS Appl Mater Interfaces. 2018 Apr 25;10(16):13712-13719. doi: 10.1021/acsami.8b02543. Epub 2018 Apr 12.

Abstract

Ferroelectric materials can be utilized for fabricating photodetectors because of the photovoltaic effect. Enhancing the photovoltaic performance of ferroelectric materials is still a challenge. Here, a self-powered ultraviolet (UV) photodetector is designed based on the ferroelectric BiFeO3 (BFO) material, exhibiting a high current/voltage response to 365 nm light in heating/cooling states. The photovoltaic performance of the BFO-based device can be well modulated by applying different temperature variations, where the output current and voltage can be enhanced by 60 and 75% in heating and cooling states, respectively. The enhancement mechanism of the photocurrent is associated with both temperature effect and thermo-phototronic effect in the photovoltaic process. Moreover, a 4 × 4 matrix photodetector array has been designed for detecting the 365 nm light distribution in the cooling state by utilizing photovoltage signals. This study clarifies the role of the temperature effect and the thermo-phototronic effect in the photovoltaic process of the BFO material and provides a feasible route for pushing forward practical applications of self-powered UV photodetectors.

Keywords: BiFeO3; UV photodetector; photovoltaic effect; self-powered; thermo-phototronic effect.