Early diagnosis of type 2 diabetes based on multiple biomarkers and non-invasive indices

J Clin Biochem Nutr. 2018 Mar;62(2):187-194. doi: 10.3164/jcbn.17-81. Epub 2017 Dec 27.

Abstract

We previously reported that type 2 diabetes risk, early impaired glucose tolerance and insulin resistance can be predicted by measuring the fasting levels of certain biomarkers. Here we validated these findings in randomly recruited healthy volunteers (n = 101) based on biomarker expression as well as various non-invasive indices. Weight, body mass index, waist circumference and visceral fat differed between individuals with impaired fasting glucose and/or impaired glucose tolerance, and normal subjects. Fasting plasma levels of glycated hemoglobin, leptin, pro-insulin and retinol binding protein 4 differed between impaired fasting glucose/impaired glucose tolerance and normal subjects group and between newly detected diabetes and normal subjects group. Insulin resistance was correlated with fasting levels of insulin and leptin/adiponectin (r = 0.913); of insulin, retinol binding protein 4 and leptin/adiponectin (r = 0.903); and of insulin, glycated albumin, and leptin/adiponectin (r = 0.913). Type 2 diabetes risk, early impaired glucose tolerance and insulin resistance were predicted with >98% specificity and sensitivity by comparing fasting glucose levels to the estimated Matsuda Index based on fasting levels of insulin, adiponectin and leptin with or without oxidative lineolate metabolites. Non-invasive indices are slightly correlated with glucose tolerance and insulin resistance but do not increase the accuracy of predicting type 2 diabetes risk.

Keywords: biomarker; diabetes; early detection; impaired glucose tolerance; oxidative stress.