Recovery of the Formation and Function of Oxidized G-Quadruplexes by a Pyrene-Modified Guanine Tract

J Am Chem Soc. 2018 May 2;140(17):5774-5783. doi: 10.1021/jacs.8b01577. Epub 2018 Apr 9.

Abstract

Oxidation is one of the frequent causes of DNA damage, especially to guanine bases. Guanine bases in the G-quadruplex (G4) are sensitive to damage by oxidation, resulting in transformation to 8-oxo-7,8-dihydroguanine (8-oxoG). Because the formation of G4 represses the expression of some cancer-related genes, the presence of 8-oxoG in a G4 sequence might affect G4 formation and induce cancer progression. Thus, oxidized-G4 formation must be controlled using a chemical approach. In the present study, we investigated the effect of introduction of 8-oxoG into a G4 sequence on the formation and function of the G4 structure. The 8-oxoG-containing G4 derived from the promoter region of the human vascular endothelial growth factor ( VEGF) gene differed topologically from unoxidized G4. The oxidized VEGF G4 did not act as a replication block and was not stabilized by the G4-binding protein nucleolin. To recover G4 function, we developed an oligonucleotide consisting of a pyrene-modified guanine tract that replaces the oxidized guanine tract and forms stable intermolecular G4s with the other intact guanine tracts. When this oligonucleotide was used, the oxidized G4 stalled replication and was stabilized by nucleolin as with the unmodified G4. This strategy generally enables recovery of the function of any oxidized G4s and therefore has potential for cancer therapy.

Publication types

  • Research Support, Non-U.S. Gov't