rSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b

FASEB J. 2018 Sep;32(9):4798-4803. doi: 10.1096/fj.201700520RR. Epub 2018 Apr 2.

Abstract

miR-27b is reported to participate in the proliferation and differentiation of hepatic stellate cells (HSCs) and to regulate fat metabolism of rat HSCs by targeting retinoid X receptor α. Our previous study also indicated that the recombinant P40 protein from Schistosoma japonicum (rSjP40) inhibited the activation of HSCs. In this study, we observed the expression of miR-27b in rSjP40-treated LX-2 cells and explored its potential mechanisms. Quantitative real-time PCR showed that rSjP40 inhibits the expression of miR-27b in LX-2 cells. Further results obtained by Western blot and dual-luciferase reporter assay confirmed that miR-27b regulates peroxisome proliferator-activated receptor γ (PPARγ) expression in rSjP40-treated LX-2 cells by targeting the 3'-UTR of PPARγ. 5-AZA-2'-deoxycytidine (5-AZA-dC), which inhibits methylation of HSCs, partially reversed rSjP40-induced down-regulation expression of miR-27b in LX-2 cells. 5-AZA-dC also partially reversed rSjP40-induced up-regulation expression of PPARγ in LX-2 cells. The increased expression of PPARγ in rSjP40-treated LX-2 cells may be partially due to miR-27b methylation. Therefore, our study provides further insight into the mechanism by which rSjP40 inhibits HSC activation and provides a basis for future study of the blocking effect of rSjP40 in liver fibrosis.-Zhu, D., Lyu, L., Shen, P., Wang, J., Chen, J., Sun, X., Chen, L., Zhang, L., Zhou, Q., Duan, Y. rSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b.

Keywords: Schistosoma japonicum; hepatic stellate cell; methylation; miR-27b.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation / physiology*
  • Cells, Cultured
  • Down-Regulation
  • Humans
  • Liver Cirrhosis / metabolism*
  • MicroRNAs / metabolism*
  • PPAR gamma / metabolism*
  • Recombinant Proteins / metabolism
  • Schistosoma japonicum / genetics
  • Up-Regulation

Substances

  • MIRN27 microRNA, human
  • MicroRNAs
  • PPAR gamma
  • Recombinant Proteins