Scaling tunable network model to reproduce the density-driven superlinear relation

Chaos. 2018 Mar;28(3):033122. doi: 10.1063/1.5023736.

Abstract

Previous works have shown the universality of allometric scaling under total and density values at the city level, but our understanding of the size effects of regions on the universality of allometric scaling remains inadequate. Here, we revisit the scaling relations between the gross domestic production (GDP) and the population based on the total and density values and first reveal that the allometric scaling under density values for different regions is universal. The scaling exponent β under the density value is in the range of (1.0, 2.0], which unexpectedly exceeds the range observed by Pan et al. [Nat. Commun. 4, 1961 (2013)]. For the wider range, we propose a network model based on a 2D lattice space with the spatial correlation factor α as a parameter. Numerical experiments prove that the generated scaling exponent β in our model is fully tunable by the spatial correlation factor α. Our model will furnish a general platform for extensive urban and regional studies.