Inhibition of prostate cancer DU145 cell growth with small interfering RNA targeting the SATB1 gene

Exp Ther Med. 2018 Mar;15(3):3028-3033. doi: 10.3892/etm.2018.5792. Epub 2018 Jan 24.

Abstract

Prostate cancer is a common visceral cancer of men worldwide. It is important to develop a more effective treatment for prostate cancer to overcome the treatment resistance that occurs with recurrence. RNA interference has been demonstrated to be a powerful tool for gene knockdown and has potential as a cancer treatment. It has been previously demonstrated that staining of special AT-rich sequence-binding protein 1 (SATB1) was stronger in prostatic carcinoma with metastasis compared with prostatic carcinoma without metastasis. In the present study, SATB1 small interfering (si)RNA was transfected into prostate cancer DU145 cells and normal human lung fibroblast cells, and cell proliferation was investigated using a Cell Counting kit-8. Three siRNA were transfected into cells using siPORT Lipid Transfection agent, and blank control and negative control groups were established. The cells were harvested and SATB1 mRNA and protein expression was determined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. DU145 cell adhesion, migration and invasion capabilities were determined using cell adhesion, Transwell and Transwell with Matrigel assays, respectively. Silencing SATB1 significantly inhibited DU145 cell growth, adhesion, migration and invasive capability in vitro, indicating that a SATB1-targeting siRNA was successfully engineered. The results of the present study suggest that SATB1 siRNA may be a potential agent for treating human prostate cancer.

Keywords: matrix metalloproteinase 2; metastasis; prostate cancer; small interfering RNA; special AT-rich sequence-binding protein 1.