Effect of Relaxation of Deltamethrin Pressure on Metabolic Resistance in a Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) Strain Harboring Fixed P989P and G1016G kdr Alleles

J Med Entomol. 2018 Jun 28;55(4):975-981. doi: 10.1093/jme/tjy037.

Abstract

Mutation of the voltage-gated sodium channel genes or knockdown resistance (kdr) and metabolic resistance in Aedes aegypti (L.) (Diptera: Culicidae) are important resistance mechanisms against pyrethroids. The present study investigated the effect of relaxation of deltamethrin selection pressure on the level of mixed-function oxidases (MFO), when the allele frequency of S989P+V1016G mutations is fixed in a resistant Ae. aegypti strain (UPK-R) from Chiang Mai, Thailand. The mosquitoes were divided into two groups, exposure and nonexposure groups, and maintained for 12 generations in an insectary room. Adults of the exposure group (F3 to F12) were treated with 0.05% deltamethrin-impregnated papers. The median lethal concentrations (LC50) of deltamethrin of larvae were determined by World Health Organization (WHO) bioassay. MFO activity was determined in F0 and F12. The results revealed that there was a decreasing trend of adult mortality rates in the exposure group over time. The larval LC50 values of the exposure group were gradually increased, whereas those of the nonexposure group were gradually decreased. The level of MFO activity in the nonexposure group (F12) was lower than the parent and exposure groups (F12) by 1.5 and 4-fold in the larvae, respectively, and 1.5 and 2.5-fold in the adult females, respectively. However, the frequency of P989+G1016 alleles in both groups was 100% up to F12 when the experiment ended. This study indicates that there was a significant but small reduction in the activity levels of MFOs when pyrethroid selection pressure is relaxed in this kdr strain of Ae. aegypti.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes / drug effects*
  • Aedes / genetics*
  • Animals
  • Gene Frequency / drug effects*
  • Insecticide Resistance*
  • Insecticides / pharmacology
  • Nitriles / pharmacology*
  • Pyrethrins / pharmacology*
  • Selection, Genetic*

Substances

  • Insecticides
  • Nitriles
  • Pyrethrins
  • decamethrin