Collective Effects in Second-Harmonic Generation from Plasmonic Oligomers

Nano Lett. 2018 Apr 11;18(4):2571-2580. doi: 10.1021/acs.nanolett.8b00308. Epub 2018 Mar 30.

Abstract

We investigate collective effects in plasmonic oligomers of different symmetries using second-harmonic generation (SHG) microscopy with cylindrical vector beams (CVBs). The oligomers consist of gold nanorods that have a longitudinal plasmon resonance close to the fundamental wavelength that is used for SHG excitation and whose long axes are arranged locally such that they follow the distribution of the transverse component of the electric field of radially or azimuthally polarized CVBs in the focal plane. We observe that SHG from such rotationally symmetric oligomers is strongly modified by the interplay between the polarization properties of the CVB and interparticle coupling. We find that the oligomers with radially oriented nanorods exhibit small coupling effects. In contrast, we find that the oligomers with azimuthally oriented nanorods exhibit large coupling effects that lead to silencing of SHG from the whole structure. Our experimental results are in very good agreement with numerical calculations based on the boundary element method. The work describes a new route for studying coupling effects in complex arrangements of nano-objects and thereby for tailoring the efficiency of nonlinear optical effects in such structures.

Keywords: Cylindrical vector beams; boundary element method; electron beam lithography; plasmonic oligomers; second-harmonic generation microscopy.

Publication types

  • Research Support, Non-U.S. Gov't