Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors

J Colloid Interface Sci. 2018 Jul 15:522:40-47. doi: 10.1016/j.jcis.2018.03.055. Epub 2018 Mar 17.

Abstract

A combination of electrospinning technique and hydrothermal process was carried out to fabricate zinc oxide nano-flakes wrapped carbon nanofibers (ZnO/CNFs) composite as an effective electrode material for supercapacitor. The morphology of the as-synthesized composite clearly revealed that the carbon nanofibers were successfully wrapped with ZnO nano-flakes. The electrochemical performance of the as-synthesized nanocomposite electrode was evaluated by the cyclic voltammetry (CV), galvanostatic charge-discharge (GDC), and electrochemical impedance spectroscopy (EIS), and compared with the pristine ZnO nanofibers. It was found that the composite exhibited a higher specific capacitance (260 F/g) as compared to pristine ZnO NFs (118 F/g) at the scan rate of 5 mV/s. Furthermore, the ZnO/CNFs composite also exhibited good capacity retention (73.33%). The obtained results indicated great potential applications of ZnO/CNFs composite in developing energy storage devices with high energy and power densities. The present work might provide a new route for utilizing ZnO based composites for energy storage applications.

Keywords: Electrospinning; Hydrothermal; Supercapacitor; ZnO nano-flakes; ZnO/CNFs composite.