Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain

Magn Reson Med. 2018 Nov;80(5):1824-1835. doi: 10.1002/mrm.27174. Epub 2018 Mar 24.

Abstract

Purpose: To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T.

Theory and methods: SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (tI/ tD ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R1 of free water (R1f ), and the rate of MT exchange (kmf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal tI /tD combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient.

Results: Two optimal sampling schemes were determined: (i) a 5-point scheme (kmf estimated) and (ii) a 4-point scheme (kmf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing kmf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain.

Conclusions: qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB0 , B1+, and T1 ) when optimized tI -tD combinations are selected.

Keywords: cross-relaxation; myelin; optimization; quantitative magnetization transfer; selective inversion recovery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Algorithms
  • Brain / diagnostic imaging*
  • Brain Chemistry / physiology*
  • Brain Mapping / methods*
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Myelin Sheath / chemistry
  • Phantoms, Imaging