Recurrent Transformation of Prior Knowledge Based Model for Human Motion Recognition

Comput Intell Neurosci. 2018 Jan 14:2018:4160652. doi: 10.1155/2018/4160652. eCollection 2018.

Abstract

Motion related human activity recognition using wearable sensors can potentially enable various useful daily applications. So far, most studies view it as a stand-alone mathematical classification problem without considering the physical nature and temporal information of human motions. Consequently, they suffer from data dependencies and encounter the curse of dimension and the overfitting issue. Their models are hard to be intuitively understood. Given a specific motion set, if structured domain knowledge could be manually obtained, it could be used for better recognizing certain motions. In this study, we start from a deep analysis on natural physical properties and temporal recurrent transformation possibilities of human motions and then propose a useful Recurrent Transformation Prior Knowledge-based Decision Tree (RT-PKDT) model for recognition of specific human motions. RT-PKDT utilizes temporal information and hierarchical classification method, making the most of sensor streaming data and human knowledge to compensate the possible data inadequacy. The experiment results indicate that the proposed method performs superior to those adopted in related works, such as SVM, BP neural networks, and Bayesian Network, obtaining an accuracy of 96.68%.

MeSH terms

  • Algorithms*
  • Decision Trees*
  • Humans
  • Motion*