Structural and Electrochemical Evaluation of Three- and Two-Dimensional Organohalide Perovskites and Their Influence on the Reversibility of Lithium Intercalation

Inorg Chem. 2018 Apr 2;57(7):4181-4188. doi: 10.1021/acs.inorgchem.8b00397. Epub 2018 Mar 21.

Abstract

Organic-inorganic hybrid perovskite materials have recently been investigated in a variety of applications, including solar cells, light emitting devices (LEDs), and lasers because of their impressive semiconductor properties. Nevertheless, the perovskite structure has the ability to host extrinsic elements, making its application in the battery field possible. During the present study, we fabricated and investigated the electrochemical properties of three-dimensional (3D) methylammonium lead mixed-halide CH3NH3PbI3- xBr x and two-dimensional (2D) propylammonium-methlylammonium lead bromide (CH3NH3)2(CH3(CH2)2NH3)2Pb3Br10 hybrid perovskite thin films as electrode materials for Li-ion batteries. These electrodes were obtained by solution processing at 100 °C. CH3NH3PbBr3 achieved high discharge/charge capacities of ∼500 mA h g-1 /160 mA h g-1 that could account also for other processes taking place during the Li intercalation. It was also found that bromine plays an important role for lithium intercalation, while the new 2D (CH3NH3)2(CH3(CH2)2NH3)2Pb3Br10 with a layered structure allowed reversibility of the lithium insertion-extraction of 100% with capacities of ∼375 mA h g-1 in the form of a thin film. Results suggest that tuning the composition of these materials can be used to improve intercalation capacities, while modification from 3D to 2D layered structures contributes to improving lithium extraction. The mechanism of the lithium insertion-extraction may consist of an intercalation mechanism in the hybrid material accompanying the alloying-dealloying process of the Li xPb intermetallic compounds. This work contributes to revealing the relevance of both composition and structure of potential hybrid perovskite materials as future thin film electrode materials with high capacity and compositional versatility.