Influence of pruning waste biochar and oyster shell on N2O and CO2 emissions from Japanese pear orchard soil

Heliyon. 2018 Mar 12;4(3):e00568. doi: 10.1016/j.heliyon.2018.e00568. eCollection 2018 Mar.

Abstract

Two incubation experiments were conducted under controlled moisture and temperature conditions to determine the effects of soil amendment treatments based on pruning waste biochar and oyster shell, on N2O and CO2 emissions from an orchard soil. In experiment 1, four treatments were tested including, control (CK), pruning waste biochar at 2% (B2%), at 10% (B10%), and oyster shell (OS), mixed with soil from two different depths, namely, from the 0-5 cm and the 0-10 cm layers. In experiment 2, only the 0-10 cm soil layer was used to study the effect of surface application of pruning waste biochar (B2% and B10%) on soil N2O and CO2 emissions. The results showed that soil pH, total C and C: N ratio increased with biochar amendment treatments. Significant reduction in soil NO3- content was observed for the B10% treatment. Although OS application increased soil pH, no effect was observed on soil mineral N content, total C or C: N ratio. The rate of N2O emissions from the 0-5 cm soil layer after B2% and B10% addition, significantly declined by 12.5% and 26.3%, respectively. However, only the B10% treatment caused significant reduction in N2O emissions from the 0-10 cm soil layer and from surface soil, by 15.1% and 13.8%, respectively. Oyster shell application had no effect on either soil N2O or CO2 emissions from either soil layer tested. Our results suggest that the addition of pruning waste biochar at a high rate has the potential to mitigate N2O emissions from orchard soils; while, oyster shell can be used for liming without altering soil N2O nor CO2 emissions.

Keywords: Agriculture; Earth sciences; Environmental science.