DNA plasticity and damage in amyotrophic lateral sclerosis

Neural Regen Res. 2018 Feb;13(2):173-180. doi: 10.4103/1673-5374.226377.

Abstract

The pathophysiology of amyotrophic lateral sclerosis (ALS) is particularly challenging due to the heterogeneity of its clinical presentation and the diversity of cellular, molecular and genetic peculiarities involved. Molecular insights unveiled several novel genetic factors to be inherent in both familial and sporadic disease entities, whose characterizations in terms of phenotype prediction, pathophysiological impact and putative prognostic value are a topic of current researches. However, apart from genetically well-defined high-confidence and other susceptibility loci, the role of DNA damage and repair strategies of the genome as a whole, either elicited as a direct consequence of the underlying genetic mutation or seen as an autonomous parameter, in the initiation and progression of ALS, and the different cues involved in either process are still incompletely understood. This mini review summarizes current knowledge on DNA alterations and counteracting DNA repair strategies in ALS pathology and discusses the putative role of unconventional DNA entities including transposable elements and extrachromosomal circular DNA in the disease process. Focus is set on SOD1-related pathophysiology, with extension to FUS, TDP-43 and C9ORF72 mutations. Advancing our knowledge in the field will contribute to an improved understanding of this relentless disease, for which therapeutic options others than symptomatic approaches are almost unavailable.

Keywords: DNA damage and repair; SOD1 mutations; TDP-43 pathology; amyotrophic lateral sclerosis; extrachromosomal circular DNA; microDNA; nuclear pore complex; transposable elements.

Publication types

  • Review