KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis

PLoS One. 2018 Mar 19;13(3):e0192145. doi: 10.1371/journal.pone.0192145. eCollection 2018.

Abstract

Vision impairment from corneal fibrosis is a common consequence of irregular corneal wound healing after injury. Intermediate-conductance calmodulin/calcium-activated K+ channels 3.1 (KCa3.1) play an important role in cell cycle progression and cellular proliferation. Proliferation and differentiation of corneal fibroblasts to myofibroblasts can lead to corneal fibrosis after injury. KCa3.1 has been shown in many non-ocular tissues to promote fibrosis, but its role in corneal fibrosis is still unknown. In this study, we characterized the expression KCa3.1 in the human cornea and its role in corneal wound healing in vivo using a KCa3.1 knockout (KCa3.1-/-) mouse model. Additionally, we tested the hypothesis that blockade of KCa3.1 by a selective KCa3.1 inhibitor, TRAM-34, could augment a novel interventional approach for controlling corneal fibrosis in our established in vitro model of corneal fibrosis. The expression of KCa3.1 gene and protein was analyzed in human and murine corneas. Primary human corneal fibroblast (HCF) cultures were used to examine the potential of TRAM-34 in treating corneal fibrosis by measuring levels of pro-fibrotic genes, proteins, and cellular migration using real-time quantitative qPCR, Western blotting, and scratch assay, respectively. Cytotoxicity of TRAM-34 was tested with trypan blue assay, and pro-fibrotic marker expression was tested in KCa3.1-/-. Expression of KCa3.1 mRNA and protein was detected in all three layers of the human cornea. The KCa3.1-/- mice demonstrated significantly reduced corneal fibrosis and expression of pro-fibrotic marker genes such as collagen I and α-smooth muscle actin (α-SMA), suggesting that KCa3.1 plays an important role corneal wound healing in vivo. Pharmacological treatment with TRAM-34 significantly attenuated corneal fibrosis in vitro, as demonstrated in HCFs by the inhibition TGFβ-mediated transcription of pro-fibrotic collagen I mRNA and α-SMA mRNA and protein expression (p<0.001). No evidence of cytotoxicity was observed. Our study suggests that KCa3.1 regulates corneal wound healing and that blockade of KCa3.1 by TRAM-34 offers a potential therapeutic strategy for developing therapies to cure corneal fibrosis in vivo.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation / drug effects
  • Cell Differentiation / genetics
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics
  • Cells, Cultured
  • Cornea / drug effects
  • Cornea / metabolism*
  • Cornea / pathology
  • Corneal Diseases / drug therapy
  • Corneal Diseases / genetics
  • Corneal Diseases / metabolism*
  • Disease Models, Animal*
  • Fibroblasts / metabolism
  • Fibrosis
  • Gene Expression / drug effects
  • Humans
  • Intermediate-Conductance Calcium-Activated Potassium Channels / antagonists & inhibitors
  • Intermediate-Conductance Calcium-Activated Potassium Channels / genetics
  • Intermediate-Conductance Calcium-Activated Potassium Channels / metabolism*
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Molecular Targeted Therapy / methods
  • Myofibroblasts / metabolism
  • Pyrazoles / pharmacology
  • Wound Healing / drug effects
  • Wound Healing / genetics

Substances

  • Intermediate-Conductance Calcium-Activated Potassium Channels
  • Pyrazoles
  • TRAM 34