Lipid Nanocarriers for Oral Delivery of Serenoa repens CO2 Extract: A Study of Microemulsion and Self-Microemulsifying Drug Delivery Systems

Planta Med. 2018 Jul;84(9-10):736-742. doi: 10.1055/a-0589-0474. Epub 2018 Mar 15.

Abstract

The aim of this study was the development and characterization of lipid nanocarriers using food grade components for oral delivery of Serenoa repens CO2 extract, namely microemulsions (MEs) and self-microemulsifying drug delivery systems (SMEDDSs) to improve the oral absorption. A commercial blend (CB) containing 320 of S. repens CO2 extract plus the aqueous soluble extracts of nettle root and pineapple stem was formulated in two MEs and two SMEDDSs. The optimized ME loaded with the CB (CBM2) had a very low content of water (only 17.3%). The drug delivery systems were characterized by dynamic light scattering, transmission electron microscopy, and high-performance liquid chromatography (HPLC) with a diode-array detector analyses in order to evaluate the size, the homogeneity, the morphology, and the encapsulation efficiency. β-carotene was selected as marker for the quantitative HPLC analysis. Additionally, physical and chemical stabilities were acceptable during 3 wk at 4 °C. Stability of these nanocarriers in simulated stomach and intestinal conditions was proved. Finally, the improvement of oral absorption of S. repens was studied in vitro using parallel artificial membrane permeability assay. An enhancement of oral permeation was found in both CBM2 and CBS2 nanoformulations comparing with the CB and S. repens CO2 extract. The best performance was obtained by the CBM2 nanoformulation (~ 17%) predicting a 30 - 70% passive oral human absorption in vivo.

MeSH terms

  • Administration, Oral
  • Carbon Dioxide / administration & dosage*
  • Drug Delivery Systems*
  • Emulsions
  • Humans
  • Lipids / chemistry*
  • Nanotechnology*
  • Serenoa / chemistry*
  • beta Carotene / administration & dosage*

Substances

  • Emulsions
  • Lipids
  • beta Carotene
  • Carbon Dioxide