3VSR: Three Valued Secure Routing for Vehicular Ad Hoc Networks using Sensing Logic in Adversarial Environment

Sensors (Basel). 2018 Mar 14;18(3):856. doi: 10.3390/s18030856.

Abstract

Today IoT integrate thousands of inter networks and sensing devices e.g., vehicular networks, which are considered to be challenging due to its high speed and network dynamics. The goal of future vehicular networks is to improve road safety, promote commercial or infotainment products and to reduce the traffic accidents. All these applications are based on the information exchange among nodes, so not only reliable data delivery but also the authenticity and credibility of the data itself are prerequisite. To cope with the aforementioned problem, trust management come up as promising candidate to conduct node's transaction and interaction management, which requires distributed mobile nodes cooperation for achieving design goals. In this paper, we propose a trust-based routing protocol i.e., 3VSR (Three Valued Secure Routing), which extends the widely used AODV (Ad hoc On-demand Distance Vector) routing protocol and employs the idea of Sensing Logic-based trust model to enhance the security solution of VANET (Vehicular Ad-Hoc Network). The existing routing protocol are mostly based on key or signature-based schemes, which off course increases computation overhead. In our proposed 3VSR, trust among entities is updated frequently by means of opinion derived from sensing logic due to vehicles random topologies. In 3VSR the theoretical capabilities are based on Dirichlet distribution by considering prior and posterior uncertainty of the said event. Also by using trust recommendation message exchange, nodes are able to reduce computation and routing overhead. The simulated results shows that the proposed scheme is secure and practical.

Keywords: AODV; Vehicular Ad-Hoc Networks; dirichlet distribution; sensing logic; trust model.