Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress

Nutrients. 2018 Mar 14;10(3):350. doi: 10.3390/nu10030350.

Abstract

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress have been suggested to play a key role in insulin resistance development. Reactive oxygen species (ROS) production and lipid accumulation due to mitochondrial dysfunction seemed to be important mechanisms leading to cellular insulin resistance. Moreover, mitochondria are functionally and structurally linked to ER, which undergoes stress in conditions of chronic overnutrition, activating the unfolded protein response, which in turn activates the principal inflammatory pathways that impair insulin action. Among the nutrients, dietary fats are believed to play key roles in insulin resistance onset. However, not all dietary fats exert the same effects on cellular energy metabolism. Dietary omega 3 polyunsaturated fatty acids (PUFA) have been suggested to counteract insulin resistance development by modulating mitochondrial bioenergetics and ER stress. In the current review, we summarized current knowledge on the role played by mitochondrial and ER stress in inflammation and insulin resistance onset, focusing on the modulation role of omega 3 PUFA on these stress pathways. Understanding the mechanisms by which omega 3 PUFA modulates cellular metabolism and insulin resistance in peripheral tissues may provide additional details on the potential impact of omega 3 PUFA on metabolic function and the management of insulin resistance in humans.

Keywords: DHA; EPA; MAM; fish oil; inflammasome; mitochondrial dysfunction; mitofusin; oxidative stress.

Publication types

  • Review

MeSH terms

  • Animals
  • Endoplasmic Reticulum Stress / drug effects*
  • Endoplasmic Reticulum Stress / physiology
  • Fatty Acids, Omega-3 / metabolism*
  • Humans
  • Insulin Resistance / physiology*
  • Mitochondria / metabolism*

Substances

  • Fatty Acids, Omega-3