Modeling p K Shift in DNA Triplexes Containing Locked Nucleic Acids

J Chem Inf Model. 2018 Apr 23;58(4):773-783. doi: 10.1021/acs.jcim.7b00741. Epub 2018 Mar 23.

Abstract

The protonation states for nucleic acid bases are difficult to assess experimentally. In the context of DNA triplex, the protonation state of cytidine in the third strand is particularly important, because it needs to be protonated in order to form Hoogsteen hydrogen bonds. A sugar modification, locked nucleic acid (LNA), is widely used in triplex forming oligonucleotides to target sites in the human genome. In this study, the parameters for LNA are developed in line with the CHARMM nucleic acid force field and validated toward the available structural experimental data. In conjunction, two computational methods were used to calculate the protonation state of the third strand cytidine in various DNA triplex environments: λ-dynamics and multiple pH regime. Both approaches predict p K of this cytidine shifted above physiological pH when cytidine is in the third strand in a triplex environment. Both methods show an upshift due to cytidine methylation, and a small downshift when the sugar configuration is locked. The predicted p K values for cytidine in DNA triplex environment can inform the design of better-binding oligonucleotides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / chemistry*
  • Hydrogen-Ion Concentration
  • Models, Molecular*
  • Nucleic Acid Conformation
  • Oligonucleotides / chemistry*

Substances

  • Oligonucleotides
  • locked nucleic acid
  • triplex DNA
  • DNA