Symmetry difference electrical impedance tomography-a novel modality for anomaly detection

Physiol Meas. 2018 Apr 26;39(4):044007. doi: 10.1088/1361-6579/aab656.

Abstract

Objective: The theoretical basis, experimental implementation, and proof of concept of a novel electrical impedance tomography (EIT) imaging technique, called symmetry difference EIT, is described. This technique is applicable in situations where there is inherent symmetry in the region being imaged.

Methods: The sample scenario of the human head is used to describe the technique. The head is largely symmetrical across the sagittal plane. A unilateral lesion such as a haemorrhage or region of ischaemia distorts that symmetry. This distortion may be visualised using EIT. Measurement sets from a ring of electrodes placed on the boundary in both clockwise and counter-clockwise orientations are compared to detect the anomaly. Computer simulations featuring a hemispherical model of the head and brain are used initially to demonstrate the theory. Then, a more complex numerical model with anatomically accurate finite element models (FEMs) is used to expand on the concept with a more realistic scenario. Finally, tank experiments are performed with phantom lesions to validate the technique in the real world.

Results: Deviations from normal symmetry, due to the presence of lesions, are detectable using this new modality. The ease of detection improves with larger lesions and those far from the plane of symmetry. Quantitative metrics, as well as an image, help to robustly detect and identify both the presence of an abnormality and the cause (haemorrhagic or ischaemic lesion in the scenarios tested) or indeed indicate where no detection is possible.

Conclusion: Symmetry difference EIT is a valuable new modality that is applicable to cases where the 'normal' features symmetry across a plane. Significantly, a change in the region of interest is not required and hence this technique may be suited to static or quasi-static cases where time difference EIT cannot be used.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Impedance
  • Image Processing, Computer-Assisted / methods*
  • Signal-To-Noise Ratio
  • Tomography*