CNT@rGO@MoCuSe Composite as an Efficient Counter Electrode for Quantum Dot-Sensitized Solar Cells

ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10036-10042. doi: 10.1021/acsami.7b18526. Epub 2018 Mar 13.

Abstract

This paper reports an efficient and simple strategy for the synthesis of molybdenum copper selenide (MoCuSe) nanoparticles decorated with a combination of a carbon nanotube (CNT) network and reduced graphene oxide (rGO) nanosheets to form an integrated hybrid architecture (CNT@rGO@MoCuSe) using a two-step hydrothermal approach. The synthesized hybrid CNT@rGO@MoCuSe material onto the Ni foam substrate is applied successfully as an effective counter electrode (CE) in quantum dot-sensitized solar cells (QDSSCs). A highly conductive CNT@rGO network grown on electrochemically active MoCuSe particles provides a large surface area and exhibits a rapid electron transport rate at the interface of CE/electrolyte. As a result, the QDSSC with the designed CNT@rGO@MoCuSe CE shows a higher power conversion efficiency of 8.28% under 1 sun (100 mW cm-2) irradiation, which is almost double the efficiency of 4.04% for the QDSSC with the MoCuSe CE. Furthermore, the QDSSC based on the CNT@rGO@MoCuSe CE delivers superior stability at a working state for over 100 h. Therefore, CNT@rGO@MoCuSe is very promising as a stable and efficient CE for QDSSCs and offers new opportunities for the development of hybrid, effective, and robust materials for energy-related fields.

Keywords: CNT@rGO@MoCuSe; counter electrode; electrocatalytic activity; quantum dot-sensitized solar cells; stability.