Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams

Ecol Evol. 2018 Feb 4;8(5):2542-2553. doi: 10.1002/ece3.3790. eCollection 2018 Mar.

Abstract

Plant litter decomposition is an essential ecosystem function that contributes to carbon and nutrient cycling in streams. Aquatic shredders, mainly macroinvertebrates, can affect this process in various ways; they consume leaf litter, breaking it down into fragments and creating suitable habitats or resources for other organisms through the production of fine particulate organic matter (FPOM). However, measures of litter-feeding traits across a wide range of aquatic macroinvertebrates are still rare. Here, we assessed the contributions of 11 species of freshwater macroinvertebrates to litter decomposition, by measuring consumption rate, FPOM production, and assimilation rate of highly decomposable (Alnus glutinosa) or poorly decomposable (Quercus robur) leaf litter types. In general, an increase in the quality of litter improved the litter consumption rate, and fungal conditioning of the leaf litter increased both the litter consumption rate and FPOM production. Macroinvertebrates specializing in leaf litter consumption also appeared to be the most sensitive to shifts in litter quality and the conditioning process. Contrary to expectations, the conditioning process did not increase the assimilation of low-quality litter. There was a strong correlation between the relative consumption rate (RCR) of the two litter types, and the relative FPOM production (RFP) was strongly correlated to the RCR. These findings suggest a consistent relationship between RCR and macroinvertebrate identity that is not affected by litter quality, and that the RFP could be inferred from the RCR. The varying responses of the macroinvertebrate feeding traits to litter quality and the conditioning process suggest that the replacement of a shredder invertebrate species by another species could have major consequences for the decomposition process and the detritus-based food web in streams. Further studies onto the importance of invertebrate identity and the effects of litter quality in a variety of freshwater ecosystems are needed to understand the whole ecosystem functioning and to predict its response to environmental changes.

Keywords: feces production; freshwater macroinvertebrates; functional trait; litter consumption; temperate stream.