Optical performance of large-area crystalline coatings

Opt Express. 2018 Mar 5;26(5):6114-6125. doi: 10.1364/OE.26.006114.

Abstract

Given their excellent optical and mechanical properties, substrate-transferred crystalline coatings are an exciting alternative to amorphous multilayers for applications in precision interferometry. The high mechanical quality factor of these single-crystal interference coatings reduces the limiting thermal noise in precision optical instruments such as reference cavities for narrow-linewidth laser systems and interferometric gravitational wave detectors. In this manuscript, we explore the optical performance of GaAs/AlGaAs crystalline coatings transferred to 50.8-mm (2-inch) diameter fused silica and sapphire substrates. We present results for the transmission, scattering, absorption, and surface quality of these prototype samples including the defect density and micro-roughness. These novel coatings exhibit optical performance on par with state-of-the-art dielectric structures, encouraging further work focused on the fabrication of larger optics using this technique.