Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility

Opt Express. 2017 Feb 6;25(3):2608-2617. doi: 10.1364/OE.25.002608.

Abstract

High resolution X-ray diagnosis is a significant method for obtaining ablation-front and trajectory measurements targeting Rayleigh-Taylor (RT)-instability growth in initial confinement fusion (ICF) experiments. In this paper, a novel Kirkpatrick-Baez-type structure, as a kind of essential X-ray micro-imaging apparatus, has been developed that realizes a large field of view (FOV) and images with high resolution and energy response. Zoned multilayer coating technology is applied to the Kirkpatrick-Baez mirrors to transmit two specific quasi-monochromatic light through the same mirror and enables a compact dual-channel structure. This microscope has been assembled in the laboratory and later implemented at the Chinese SG-III laser facility. The characterization results show that this imaging system can achieve a good spatial resolution of 5 µm in a large FOV of 500 µm, while maintaining a strong monochromatic performance with bandwidth of 0.5 keV at 2.5 keV and 4.3 keV respectively.