From Nanostructural Evolution to Dynamic Interplay of Constituents: Perspectives for Perovskite Solar Cells

Adv Mater. 2018 Oct;30(42):e1704208. doi: 10.1002/adma.201704208. Epub 2018 Mar 8.

Abstract

Moving away from the high-performance achievements in organometal halide perovskite (OHP)-based optoelectronic and photovoltaic devices, intriguing features have been reported in that photocarriers and mobile ionic species within OHPs interact with light, electric fields, or a combination of both, which induces both spatial and temporal changes of optoelectronic properties in OHPs. Since it is revealed that the transport of photocarriers and the migration of ionic species are affected not only by each other but also by the inhomogeneous character, which is a consequence of the route selected to deposit OHPs, understanding the nanostructural evolution during OHP deposition, in terms of the resultant structural defects, electronic traps, and nanoscopic charge behaviors, will be valuable. Investigation of the film-growth mechanisms and strategies adopted to realize OHP films with less-defective large grains is of central importance, considering that single-crystalline OHPs have exhibited the most beneficial properties, including carrier lifetimes. Critical factors governing the behavior of photocarriers, mobile ionic species, and nanoscale optoelectronic properties resulting from either or all of them are further summarized, which may potentially limit or broaden the optoelectronic and photovoltaic applications of OHPs. Through inspection of the recent advances, a comprehensive picture and future perspective of OHPs are provided.

Keywords: electronic traps; ion migration; nanostructures; organometal halide perovskites; photogenerated carriers.

Publication types

  • Review