Seasonal drought effects on the water quality of the Biobío River, Central Chile

Environ Sci Pollut Res Int. 2018 May;25(14):13844-13856. doi: 10.1007/s11356-018-1415-6. Epub 2018 Mar 6.

Abstract

Quantifying the effect of droughts on ecosystem functions is essential to the development of coastal zone and river management under a changing climate. It is widely acknowledged that climate change is increasing the frequency and intensity of droughts, which can affect important ecosystem services, such as the regional supply of clean water. Very little is understood about how droughts affect the water quality of Chilean high flow rivers. This paper intends to investigate the effect of an, recently identified, unprecedented drought in Chile (2010-2015), on the Biobío River water quality, (36°45'-38°49' S and 71°00'-73°20' W), Central Chile. This river is one of the largest Chilean rivers and it provides abundant freshwater. Water quality (water temperature, pH, dissolved oxygen, electrical conductivity, biological oxygen demand, total suspended solids, chloride, sodium, nutrients, and trace metals), during the drought (2010-2015), was compared with a pre-drought period (2000-2009) over two reaches (upstream and downstream) of the river. Multivariate analysis and seasonal Mann-Kendall trend analyses and a Theil-Sen estimator were employed to analyze trends and slopes of the reaches. Results indicated a significant decreased trend in total suspended solids and a slightly increasing trend in water temperature and EC, major ions, and trace metals (chrome, lead, iron, and cobalt), mainly in summer and autumn during the drought. The reduced variability upstream suggested that nutrient and metal concentrations were more constant than downstream. The results evidenced, due to the close relationship between river discharge and water quality, a slightly decline of the water quality downstream of the Biobío River during drought period, which could be attenuated in a post-drought period. These results displayed that water quality is vulnerable to reductions in flow, through historical and emerging solutes/contaminants and induced pH mobilization. Consequently, seasonal changes and a progressive reduction of river flow affect the ecosystem functionality in this key Chilean river. The outcomes from this research can be used to improve how low flow conditions and the effects of a reduction in the river volume and discharge are assessed, which is the case under the scenario of more frequent drought periods.

Keywords: Biobío River; Ecosystem functions; Mega-drought; River discharge; Water quality; Water supply.

MeSH terms

  • Chile
  • Droughts*
  • Environmental Monitoring*
  • Rivers / chemistry*
  • Seasons
  • Water Pollutants, Chemical / analysis*
  • Water Quality*

Substances

  • Water Pollutants, Chemical