Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device

Nanoscale. 2018 Mar 28;10(12):5424-5430. doi: 10.1039/c8nr01429a. Epub 2018 Mar 7.

Abstract

We demonstrated a flexible resistive switching device based on ultrathin Ag2Te nanowire (NW) films and Au nanosheet (NS) electrodes by exploiting a monolayer assembly on the water surface for macroscale two-dimensional structures. Firstly, ultrathin TeNWs (diameter ≈ 10 nm) are rapidly assembled on the water surface as a form of monolayer and transferred to fabricate TeNW films on various substrates with any available size. An assembled TeNW film was used as a template to produce a Ag2TeNW film through chemical transformation. A well-aligned Ag2TeNW film device showed reversible resistive switching properties when the Ag composition of the silver telluride NW becomes stoichiometric Ag2Te. Additionally, a non-stoichiometric Ag2+δTeNW film shows an increased On/Off ratio. For a flexible memory device, ultrathin AuNSs (thickness ≤20 nm) were adopted as working electrodes, since thermally deposited gold electrodes tend to crack under strain, which can fail to maintain the electrical properties. A paper-like flexibility of AuNS proved its capability as optimal electrodes of ultrathin Ag2TeNW film-based resistive memory devices.