Effect of wearing positions of load on the dynamic balance during gait

J Exerc Rehabil. 2018 Feb 26;14(1):152-155. doi: 10.12965/jer.1835120.560. eCollection 2018 Feb.

Abstract

The study aim to analyze the influence on dynamic stability relative to positions carrying with weight during gait, for which experiment participated with healthful adult males (n=9), were performed under three-dimensional (3D) conditions of no load (NL), right of trunk (RT), and front of trunk (FT). The kinematic and kinetic conclusions obtained from 3D cinematography and ground reaction force system were as follows; 1-step time elapsed showed longest in NL of all, and maximum velocity of RT showed slower than NL and FT, which resulted in significant level at (P<0.05) respectively. While NL showed slower average velocity than RT and FT, RT showed larger incline angle (extrapolated center of mass θ) than NL and FT, which resulted in significant level at (P<0.01) respectively. Also FT showed larger peak vertical force than NL and RT, which resulted in significant level at (P<0.001). Because gait pattern is regarded it as a success when fulfilled both forward propulsive force and dynamic stability, we may ensure that each other active strategy for securement and performance in a situation carrying with 20 kg of the same weight in forward and lateral plane was mobilized. However, participants in pathological gait such as leg injury, and exercise rehabilitation during walking should avoid carrying loads bag to ensure dynamic stability.

Keywords: Center of mass ve-locity; Dynamic balance; Extrapolated center of mass; Gait; Load.