Exploring modular allostery via interchangeable regulatory domains

Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3006-3011. doi: 10.1073/pnas.1717621115. Epub 2018 Mar 5.

Abstract

Most proteins comprise two or more domains from a limited suite of protein families. These domains are often rearranged in various combinations through gene fusion events to evolve new protein functions, including the acquisition of protein allostery through the incorporation of regulatory domains. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of aromatic amino acid biosynthesis and displays a diverse range of allosteric mechanisms. DAH7PSs adopt a common architecture with a shared (β/α)8 catalytic domain which can be attached to an ACT-like or a chorismate mutase regulatory domain that operates via distinct mechanisms. These respective domains confer allosteric regulation by controlling DAH7PS function in response to ligand Tyr or prephenate. Starting with contemporary DAH7PS proteins, two protein chimeras were created, with interchanged regulatory domains. Both engineered proteins were catalytically active and delivered new functional allostery with switched ligand specificity and allosteric mechanisms delivered by their nonhomologous regulatory domains. This interchangeability of protein domains represents an efficient method not only to engineer allostery in multidomain proteins but to create a new bifunctional enzyme.

Keywords: allostery; bifunctional enzyme; protein engineering; shikimate; synthetic biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Deoxy-7-Phosphoheptulonate Synthase / chemistry
  • 3-Deoxy-7-Phosphoheptulonate Synthase / genetics
  • 3-Deoxy-7-Phosphoheptulonate Synthase / metabolism*
  • Allosteric Regulation
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Gene Expression Regulation, Bacterial
  • Gene Expression Regulation, Enzymologic
  • Protein Domains
  • Thermotoga maritima / genetics
  • Thermotoga maritima / metabolism*

Substances

  • Bacterial Proteins
  • 3-Deoxy-7-Phosphoheptulonate Synthase