Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers

Mol Ther Nucleic Acids. 2018 Mar 2:10:199-214. doi: 10.1016/j.omtn.2017.12.004. Epub 2017 Dec 9.

Abstract

Oligonucleotide gene therapy has shown great promise for the treatment of muscular dystrophies. Nevertheless, the selective delivery to affected muscles has shown to be challenging because of their high representation in the body and the high complexity of their cell membranes. Current trials show loss of therapeutic molecules to non-target tissues leading to lower target efficacy. Therefore, strategies that increase uptake efficiency would be particularly compelling. To address this need, we applied a cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment) approach and identified a skeletal muscle-specific RNA aptamer. A01B RNA aptamer preferentially internalizes in skeletal muscle cells and exhibits decreased affinity for off-target cells. Moreover, this in vitro selected aptamer retained its functionality in vivo, suggesting a potential new approach for targeting skeletal muscles. Ultimately, this will aid in the development of targeted oligonucleotide therapies against muscular dystrophies.

Keywords: SELEX; antisense therapy; aptamer; delivery; gene therapy; muscular dystrophies; skeletal muscle.