Mapping the refractive index with single plasmonic nanoantenna

Sci Rep. 2018 Mar 1;8(1):3861. doi: 10.1038/s41598-018-21395-w.

Abstract

As the size of the state-of-the-art optical devices shrinks to nanoscale, the need for tools allowing mapping the local optical properties at deep sub-diffraction resolution increases. Here we demonstrate successful mapping the variations of the refractive index of a smooth dielectric surface by detecting spectral response of a single spherical-shape Ag nanoparticle optically aligned with a supporting optical fiber axicon microlens. We propose and examine various excitation schemes of the plasmonic nanoantenna to provide efficient interaction of its dipolar and quadrupolar modes with the underlying sample surface and to optimize the mapping resolution and sensitivity. Moreover, we demonstrate an lithography-free approach for fabrication of the scanning probe combining the high-quality fiber microaxicon with the Ag spherical nanoparticle atop. Supporting finite-difference time-domain calculations are undertaken to tailor the interaction of the plasmonic nanoantenna and the underlying dielectric substrate upon various excitation conditions demonstrating good agreement with our experimental findings and explaining the obtained results.